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Abstract

Over the past decades, regularization theory is widely applied in various areas of machine learning to
derive a large family of novel algorithms. Traditionally, regularization focuses on smoothing only, and
does not fully utilize the underlying discriminative knowledge which is vital for classification. In this
paper, we propose a novel regularization algorithm in the least-squares sense, called discriminatively
regularized least-squares classification (DRLSC) method, which is specifically designed for classification.
Inspired by several new geometrically motivated methods, DRLSC directly embeds the discriminative in-
formation as well as the local geometry of the samples into the regularization term so that it can explore
as much underlying knowledge inside the samples as possible and aim to maximize the margins between
the samples of different classes in each local area. Furthermore, by embedding equality type constraints
in the formulation, the solutions of DRLSC can follow from solving a set of linear equations and the
framework naturally contains multi-class problems. Experiments on both toy and real world problems
demonstrate that DRLSC is often superior in classification performance to the classical regularization
algorithms, including regularization networks, support vector machines and some of the recent studied
manifold regularization techniques.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Regularization methods for machine learning have made great
progress recently. Such methods have been extended to several sub-
areas of machine learning, including regression, clustering and clas-
sification [1–9].

A related area under extensive development is themanifold learn-
ing area, where methods have been developed to take advantage of
the locality information while performing dimensionality reduction.
In this area, Belkin et al. [5,10] further introduced the underlying
sample distribution information of the data with manifold structures
into the traditional regularization, resulting in manifold regulariza-
tion (MR), which aims to retain the manifold structure of the sam-
ples in each given class. In the framework of MR, two regularization
terms are introduced: one controls the complexity of the classifier,
and the other controls the complexity measured by the manifold
geometry of the sample distribution [5].
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However, when focusing on classification problems, we notice
that each of the above methods alone suffers from some deficien-
cies. First, although the traditional regularization methods have
been widely applied to the classifier design, it is essentially derived
from multivariate functional fitting or regression problems instead
of classification problems [2,11–13]. It constructs the regularization
term by focusing more on the smoothness of the function. However,
in classification, similar inputs near the discriminant boundaries
are more likely to belong to different classes, implying that just
a smoothness constraint may not be sufficient for discrimination
among classes. In particular, a classifier may not be always smooth
everywhere, especially when we are near the boundaries between
classes. Furthermore, the primary goal of classification is to sepa-
rate the samples of different classes in the output space as far as
possible. Hence, the underlying discriminative information is crucial
for classification. However, since the regularization terms of the
traditional regularization methods do not inject more underlying
class information in a classifier's design, they may not incorporate
all the useful discriminative information for classification.

Second, although MR performs well in semi-supervised learning
such as sensor networks [14], for supervised learning, MR suggests
constructing a graph or Laplacian matrix for each class, which results
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in an equal number of the regularization terms that is the same as
the number of classes. As a result, dependency on the number of
given classes makes MR difficult to scale well. The algorithm may
perform badly in cases of small number of classes (e.g., three or so
classes), whereas the computational complexity in the training phase
of MR will increase sharply, because making an optimal tuning for
the many regularization parameters is impractical.

In this paper, we propose a novelmethod for classification that, by
the well-known “No Free Lunch” Theorem [15], integrates as much
underlying knowledge inside the samples as possible, including the
discriminative and geometrical information, into a unified regular-
ization framework. We call our method DRLSC, which stands for dis-
criminatively regularized least-squares classification. By making the
best of the underlying discriminative information rather than only
emphasizing the smoothness of the classifier in the traditional reg-
ularization methods, DRLSC introduces a new discriminative regu-
larization term in the framework. Furthermore, inspired by the new
supervised dimensionality reduction methods, DRLSC also uses two
graphs to characterize the intra-class compactness and inter-class
separability, respectively, and thus can further maximize the mar-
gins between the samples of the different classes in each local area.
DRLSC integrates the underlying discriminative and geometrical infor-
mation into a single regularization term. A major advantage is that
it can scale well with the number of the classes. In addition, by in-
troducing the equality constraints in the formulation, the solutions
of DRLSC can be found by solving a set of linear equations, which
makes the algorithm simpler and more stable. Experiments are con-
ducted to demonstrate the superiority of our DRLSC algorithm com-
pared well with the state-of-the-art regularization methods such as
regularization networks (RN), generalized radial basis function net-
works (GRBFN), support vector machines (SVM), least squares sup-
port vector machines (LS-SVM) and manifold regularization (MR).

The rest of the paper is organized as follows. Section 2 intro-
duces the related works in regularization. Our contributions are sim-
ply described in Section 3. Section 4 presents the proposed DRLSC.
The analytic solution to DRLSC is derived in Section 5. In Section
6, the experiment analysis is given. Some conclusions are drawn
in Section 7.

2. Related works

Ill-posed problems widely exist in science and engineering re-
gions, which denotes that given the available input samples, the so-
lution to the problem is nonunique or unstable [2,16]. Early in the
1960s, Tikhonov had proposed a classical method named regular-
ization to solve these problems [17,18]. By incorporating the right
amount of prior information into the formulation, the regularization
techniques have been shown to be powerful in making the solu-
tion stable [2,16]. In the past few decades, the regularization theory
was introduced to the machine learning community on the premise
that the learning can be viewed as a multivariate functional fitting
problem [2,11–13]. Consequently, in the classical Tikhonov regular-
ization, the most common form of prior information involves the as-
sumption that the input–output mapping function, i.e., the solution
to the fitting problem, is smooth [16,19]

min
f∈F

⎧⎨
⎩
1
2

N∑
i=1

V(yi, f (xi)) + �
2

‖Df‖2
⎫⎬
⎭ (1)

where V(yi, f (xi)) is the loss function, which indicates the penalty we
pay when we see xi, predict f (xi), and the true value is yi [7]. In the
regularization term, D is a linear differential operator that is applied
to the function f, in which the prior information about the form of
the solution is embedded [16]. D is also referred to as a stabilizer
because the smoothness prior involved in it makes the solution stable

[2,16]. Moreover, the regularization parameter � controls the trade-
off between fitting the training samples and the roughness of the
solution [2,7].

Tikhonov [17,18] presented that when the loss function is desig-
nated to be the simple square-loss function

V(y, f (x)) = (y − f (x))2 (2)

the solution f�(x) to the Tikhonov regularization problem can be
represented as a linear combination of the Green's function [16]

f�(x) =
N∑
i=1

wiG(x,xi) (3)

Poggio and Girosi [11,12] showed that a regularization algorithm
for learning is equivalent to a multilayer neural network with the
Green's function as the activation function, resulting in the RN.
Haykin [16] indicated that if we select a multivariate Gaussian func-
tion as the Green's function, the solution by RN will be an optimal
interpolant in the sense that it minimizes the Tikhonov regulariza-
tion formula. GRBFN is an approximation of the RN, for its number
of the hidden units is typically less than that of the RN's, which is
equivalent to the number of the training samples.

In the classical regularization theory, a recent trend in studying
the smoothness of the function is to put the function into the re-
producing kernel Hilbert space (RKHS) [6,20], which has been well
developed in several areas [2]. In the RKHS, the Tikhonov minimiza-
tion problem can be rewritten as [21]:

min
f∈H

⎧⎨
⎩
1
2

N∑
i=1

V(yi, f (xi)) + �
2

‖f‖2K

⎫⎬
⎭ (4)

Following the so-called Representer Theorem [20,22,23], under very
general conditions on the loss function V, the minimizer of Eq. (4)
will have the form

f (x) =
N∑
i=1

ciK(x,xi) (5)

Corresponding to different selections of V, the classical Tikhonov
regularization method can be used to derive a large family of the
state-of-the-art algorithms in machine learning. When selecting V as
the square-loss function, we obtain regularized least-squares classi-
fication (RLSC) [21]. Similarly, we can obtain SVM [1,24] by choosing
V to be the hinge-loss function defined as

V(y, f (x)) =
{
0 if yf(x)�1
1 − yf(x) otherwise

(6)

Specifically, if we introduce error terms into the hinge-loss function
and consider the equality constraints instead of inequalities in SVM,
we obtain the LS-SVMwith the formulation in the least-square sense
[25]. Though introducing dissimilar loss functions, these regulariza-
tion algorithms have many inherently similar properties. Evgeniou
et al. [26] described a unified framework for RN and SVM. Rifkin [21]
indicated that RLSC empirically performs as good as SVM.

Although traditional regularization has been widely applied to
the classifier design, it focuses more on the smoothness of the clas-
sification function owing to the essential derivation from ill-posed
multivariate functional fitting problems as we mentioned above, to
enforce the constraint that similar inputs correspond to similar out-
puts. This constraint is natural for regression problems. But, it also
seems to be too general for classification. Since the regularization
terms of the traditional regularization methods do not inject more
underlying class information, they may not incorporate all the useful
discriminative information for classification.
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The well-known “No Free Lunch” Theorem [15] indicates that,
there is no pattern classification method that is inherently superior
to any other, or even to random guessing. It is the type of problem,
underlying information and the amount of training samples that
determines the form of classifier to apply. Along this line, Belkin
et al. [5,10] further introduced the underlying sample distribution
information of the data with manifold structures into the traditional
regularization, resulting in MR

min
f∈H

⎧⎨
⎩

1
N

N∑
i=1

V(yi, f (xi)) + �A‖f‖2K + �I‖f‖2I

⎫⎬
⎭ (7)

where the regularization term ‖f‖2K controls the complexity of the
classifier and the other regularization term ‖f‖2I controls the com-
plexity measured by the manifold geometry of the sample distri-
bution [5]. MR naturally contains two extensions of RLSC and SVM,
termed as Laplacian RLSC (LapRLSC) [5] and Laplacian SVM (LapSVM)
[5], respectively. Though MR performs better in semi-supervised
learning such as sensor networks [14], for fully supervised learning,
MR suggests constructing a graph for each class, i.e., different ‖f‖2I
corresponding to different classes, which undoubtedly leads to the
appearance of many free regularization parameters in the formula-
tion, especially for the multi-class problems. As a result, the compu-
tational complexity in training of MR will increase sharply.

In the previous works of dimensionality reduction, some newly
geometrically motivated approaches have been designed to address
the issue of utilizing underlying information fully. These approaches
aim to discover the manifold structures inherent in the given data
which are embedded in high-dimensional Euclidean space. Isomet-
ric feature mapping (ISOMAP) [27], locally linear embedding (LLE)
[28] and Laplacian eigenmap [29] are all variations of these non-
linear dimensionality reduction methods. Neighborhood preserving
embedding (NPE) [30] and locality preserving projection (LPP) [31]
are respectively the linear versions for LLE and Laplacian eigenmap,
which seek to the transform matrices instead of directly computing
the embedding in the nonlinear versions, and thus are more easily
applied to new samples.

However, these dimensionality reduction algorithms are unsu-
pervised in nature and cannot be used to discover the discriminant
structure in the data [32]. In contrast, supervised dimensionality re-
duction can be applied, including marginal Fisher analysis (MFA)
[33] and local discriminant embedding (LDE) [34] that both exploit
supervised class information to construct two graphs which are
respectively used to characterize the intra-class compactness and
inter-class separability of the samples. Locality sensitive discriminant
analysis (LSDA) [32] further adds an adjustable parameter to the for-
mer to balance the relative importance of the two graphs. However,
these methods have not been applied to regularization techniques
to date.

3. Contributions

In this paper, we propose a novel regularization method in the
least-squares sense in the context of classification, DRLSC. Different
from the recent regularization methods, DRLSC directly introduces
the underlying discriminative information into the regularization term.
On one hand, it minimizes the empirical loss between the desired
and actual outputs. On the other hand, it minimizes the intra-class
compactness of the outputs while simultaneously maximizing the
inter-class separation. We show that this method is more likely suit-
able for classification as compared to the previous methods in regu-
larization. Furthermore, we also introduce the underlying geometrical
information into DRLSC to make the full use of available knowledge.
Different from MR, we expect to utilize as much discrimination in-
formation characterized by the manifold structure of the given data

as possible to guide the design of classifiers. To our best knowledge,
there is no previously known method with a similar approach on
this problem. That is, with the direction of the discriminative in-
formation, DRLSC constructs two graphs to characterize the intra-
class compactness and inter-class separability respectively whose
geometric structures are intended to be also reflected in the output
space of classifier to be designed. We show that with this approach,
we can further maximize the margins between samples of different
classes in each local area in the output space [32].

In summary, the contributions of our approach are as follows:

• Different from traditional regularization, DRLSC directly intro-
duces the discriminative information into the regularization term.
DRLSC is currently designed for classification in this paper, but can
be extended to other areas such as clustering in the future works.
For the primary goal of classification is to separate the samples be-
longing to the different classes, DRLSC pays more attention to the
underlying discriminative information than the general smooth-
ness assumption on the classifier in the previous methods.

• Different from MR, DRLSC further introduces the local manifold
structure directly into the new discriminative regularization term
instead of several additional ones. It only has one adjustable reg-
ularization parameter in the formulation, even for the multi-class
problems, which makes it easier to optimize. Thus, DRLSC effec-
tively avoids the potential “curse of dimensionality” of MR in the
optimization. Following the “No Free Lunch” Theorem, DRLSC con-
siders the underlying discriminative information as well as the
geometric structure, and thus can be potentially better in classi-
fication performance.

• Different from many existing learning machines, such as classical
SVM, which decompose the multi-class problems into multiple
binary-class classification problems, DRLSC can naturally contain
binary-class and multi-class problems in a unified framework in
terms of the simple analytic solution, except only a subtle differ-
ence in the formulation.

• The framework of DRLSC covers many feasible approaches to
further improve regularization. Table 1 shows a common clas-
sification for the most popular regularization algorithms from
the viewpoint of the loss function, the regularization term and
the dependence on the number of classes of the samples, where
Rdisreg(f ,�) denotes the new discriminative regularization term in
our proposed DRLSC. As we can see, DRLSC has the most compact
form among all these algorithms. It needs neither the smoothness
term ‖f‖2K nor the manifold term ‖f‖2I . Furthermore, it can solve
the multi-class problems in the binary-class complexity [35] and
thus is independent of the number of classes. The framework of
DRLSC is general. From the table, we can see that with different
combinations of the loss function and regularization term, we can
obtain different regularization algorithms. Consequently, once we
integrate Rdisreg(f ,�) with other loss functions or regularization
terms, we can immediately gain a large family of new regulariza-
tion learning algorithms, which extends our scopes and deserves
future study.

4. Discriminatively regularized least-squares classification
(DRLSC)

Suppose that we are given the training samples

(x1, y1), . . . , (xN , yN) ∈ X× {C1, . . . ,Cc} (8)

where the domain X ∈ Rn is some nonempty set that the pattern xi
are taken from, and the yi's are class labels. The task of classification
is, by studying the training samples, to obtain a classifier which can
separate samples of different classes in the output space as far as
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Table 1
The common classification from the viewpoint of the loss function, the regularization term and the dependence on the number of classes of the samples for the most
popular regularization algorithms

Regularization Loss function Regularization term Dependence on the number of classes

Square-loss function Hinge-loss function ‖f‖2
K ‖f‖2

I Rdisreg(f ,�)

RLSC C C
LapRLSC C C C C
SVM C C
LS-SVM C C C
LapSVM C C C C
DRLSC C C

possible. For this general purpose, DRLSC aims to directly embed the
underlying discriminative information in the regularization term

min
f∈F

⎧⎨
⎩
1
2

N∑
i=1

[yi − f (xi)]2 + 1
2
Rdisreg(f ,�)

⎫⎬
⎭ (9)

where Rdisreg(f ,�) is the new discriminative regularization term in
DRLSC.

A general definition for Rdisreg(f ,�) can be given by

Rdisreg(f ,�) = �A(f ) − (1 − �)B(f ) (10)

A(f ) and B(f ) are the metrics defined in the output space, which mea-
sure the intra-class compactness and inter-class separability of the
outputs, respectively. � is the parameter that regulates the relative
significance of the intra-class compactness vs. the inter-class sep-
arability, 0���1. It is noteworthy that Rdisreg(f ,�) can no longer
be guaranteed its nonnegativity, which does not accord with the
traditional regularization requirement. However, we still abuse the
terminology, i.e., regularization, to name it as the discriminative reg-
ularization term.

The common thought of defining A(f ) and B(f ) is the generalized
variance in statistics, which is similar to maximum margin criterion
(MMC) [36] but defined in the output space. In order to differentiate
from DRLSC, we call the corresponding method as discriminative
regularization term defined with the generalized variances (DRGV).
That is,

A(f ) = Sw =
c∑

k=1

1
Nk

Nk∑
i=1

∥∥∥∥∥∥f (x
(k)
i ) − 1

Nk

Nk∑
j=1

f (x(k)j )

∥∥∥∥∥∥
2

(11)

where Nk is the number of the samples x(k)i belonging to the kth
class, k = 1, . . . , c, and ‖ · ‖ is chosen to be L2 norm throughout the
paper. Similarly,

B(f ) = Sb =
c∑

k=1

∑
l �=k

∥∥∥∥∥∥
1
Nk

Nk∑
i=1

f (x(k)i ) − 1
Nl

Nl∑
j=1

f (x(l)j )

∥∥∥∥∥∥
2

(12)

Here, a small Sw implies that every class has a small scatter;
meanwhile, a large Sb implies that the class mean vectors scatter in
a large space [36]. However, these variances focus on the global class
relationship between the samples and thus fail to sufficiently char-
acterize the local manifold structure of the data. Lafon et al. [37] in-
dicated that most of the samples in real world are highly correlated,
at least locally, or equivalently, that the samples distribute in a low
intrinsic manifold. Thus, following the “No Free Lunch” Theorem, we
present DRLSC, which considers the underlying discriminative infor-
mation as well as the geometric structure of the samples. By further
embedding the geometry of the samples into the discriminative reg-
ularization term, DRLSC aims to reflect the intrinsic neighbor rela-
tions of the samples with the same class labels while separate the
nearby samples with the different labels far from each other in the

output space. As a result, DRLSC can further maximize the margins
between the samples of different classes in each local neighborhood.

For the given training samples, we can build a nearest neighbor
graph G to model the intrinsic local geometrical structure. Specifi-
cally, for each sample xi, we first seek for its k nearest neighbors
ne(i) = {x1i , . . . ,xki }, and then put an edge between xi and its neigh-
bors. Thus, the weight matrix of G can be defined as follows [32]:

Wij =
{
1 if xj ∈ ne(i) or xi ∈ ne(j)
0 otherwise

(13)

By the well-known spectral graph theory [38], the nearest
neighbor graph G with the weight matrix W characterizes the local
geometry of the sample manifold. However, only one overall graph
cannot sufficiently reflect the discriminative structure of the sam-
ples. Hence, inspired by the new graph-based supervised dimen-
sionality reduction methods, such as MFA, LDE and LSDA, we also
construct two graphs in the input space, i.e., intra-class graph Gw
and inter-class graph Gb, whose geometric structures are intended
to be also reflected in the output space in which the classifier is
designed.

For each sample xi, in terms of LSDA, we first divide the nearest
neighborhood ne(i) into two non-overlapping subsets

new(i) = {xji| if xji and xi belong to same class, 1� j�k}

neb(i) = {xji| if xji and xi belong to different classes, 1� j�k}

Then we define the two weight matrices of Gw and Gb, respectively

Ww,ij =
{
1 if xj ∈ new(i) or xi ∈ new(j)
0 otherwise

(14)

Wb,ij =
{
1 if xj ∈ neb(i) or xi ∈ neb(j)
0 otherwise

(15)

Obviously, the nearest neighbor graph G is the combination of the
intra-class graph Gw and the inter-class graph Gb.

The goal of DRLSC is to keep the neighboring samples of Gw stay
as close as possible while the connected samples of Gb stay as far
as possible in the output space. Hence, we redefine the measure to
characterize the intra-class compactness from the intra-class graph

S̃w = 1
2

N∑
i=1

N∑
j=1

‖f (xi) − f (xj)‖2Ww,ij (16)

Likewise, the measure of characterizing the inter-class separabil-
ity from the inter-class graph is also redefined as

S̃b = 1
2

N∑
i=1

N∑
j=1

‖f (xi) − f (xj)‖2Wb,ij (17)

By embedding S̃w and S̃b into the discriminative regularization
term as the measures A(f ) and B(f ), we arrive at the following new
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optimization problem in DRLSC

min
f∈F

⎧⎨
⎩
1
2

N∑
i=1

[yi − f (xi)]2 + 1
2
[�S̃w − (1 − �)S̃b]

⎫⎬
⎭ (18)

Note that the discriminative regularization term in DRLSC is ac-
tually a difference of two convex functions. Consequently, the opti-
mization problem (18) is equivalent to

min
f∈F

⎧⎨
⎩
1
2

⎧⎨
⎩

N∑
i=1

[yi − f (xi)]2 + �S̃w

⎫⎬
⎭ − 1

2
(1 − �)S̃b

⎫⎬
⎭

which can be viewed as a special convex difference optimization.
Recently, many researchers have devoted to seek for mathemati-
cal methods to solve the convex difference optimization problem
[39,40], which generally involve iterative processes and converge to a
local minimum. Fortunately, by introducing the equality constraints
in the formulation, the optimization problem of DRLSC can be solved
analytically. We will discuss the analytical solutions in details in the
next section.

To gain more insight into Eq. (18), we simply assume that the
classifier has a linear form

f (x) = wTx + b (19)

By simple algebra formulation, Eq. (16) can be reduced to

S̃w = 1
2

N∑
i=1

N∑
j=1

[f (xi) − f (xj)]
2Ww,ij

= 1
2

N∑
i=1

N∑
j=1

(wTxi − wTxj)
2Ww,ij

= wTX(Dw − Ww)XTw

= wTXLwXTw (20)

where Dw is a diagonal matrix and its entries Dw,ii =
∑

jWw,ij. Lw =
Dw − Ww is the Laplacian matrix of Gw.

Likewise, Eq. (17) can be reformulated as

S̃b = 1
2

N∑
i=1

N∑
j=1

[f (xi) − f (xj)]
2Wb,ij

= 1
2

N∑
i=1

N∑
j=1

(wTxi − wTxj)
2Wb,ij

= wTX(Db − Wb)X
Tw

= wTXLbX
Tw (21)

where Db is also a diagonal matrix and its entries Db,ii = ∑
jWb,ij.

Lb = Db − Wb is the Laplacian matrix of Gb.
Therefore, we can further reformulate the objective function (18)

as

min
w,b

⎧⎨
⎩
1
2

N∑
i=1

[yi − (wTxi + b)]2 + 1
2
wTX[�Lw − (1 − �)Lb]X

Tw

⎫⎬
⎭ (22)

Different from the traditional regularization methods that we
have surveyed in Section 2, DRLSC embeds not only the underlying
discriminative information but also the geometrical structure of the
samples in the construction of the regularization term. The new dis-
criminative regularization term focuses on a trade-off of the relative
significance between the intra-class compactness and the inter-class
separability in each local neighborhood. By the “No Free Lunch” The-
orem, these should lead to a further improvement in the classifica-
tion performance of regularization. Furthermore, DRLSC more likely

provides us a brand-new viewpoint to combine regularization with
supervised dimensionality reduction methods effectively. The gen-
eral goal of supervised dimensionality reduction methods, such as
MMC [36], MFA [33], LDE [34] and LSDA [32], is to find an orienta-
tion for which the projected samples are well separated [15]. This
is much similar to the intuitive motivation in our proposed DRLSC.
Hence, in DRLSC, we construct the new discriminative regulariza-
tion term referring to these new dimensionality reduction methods
to some extent. Due to the generality of DRLSC learning framework,
any similar supervised dimensionality reductionmethods can be also
embedded in DRLSC as the regularization term. Through such incor-
poration with these methods, the designed classifier can more likely
further separate the samples effectively in the output space as shown
in our experiments below.

5. Analytic solutions to DRLSC

Many traditional regularization methods usually solve the
optimization problems by using conjugate gradient algorithms.
However, these algorithms generally converge slowly and some-
times cannot guarantee a convergence to the global optimum. Here,
just as LS-SVM [25], we introduce equality constraints for DRLSC
with the formulation in least-squares sense. Consequently, the so-
lution can follow directly from solving a set of linear equations
instead of the iterative processes in the common convex difference
optimizations, which makes DRLSC simpler and more stable. Fur-
thermore, many existing learning machines, such as classical SVM,
were developed for binary-class classification and thus generally
decompose the multi-class problem into multiple binary-class clas-
sification problems, by using the strategies such as one-against-one,
one-against-all [41]. However, this is computationally expensive
due to the large number of binary classifiers that are to be trained
for handling each binary sub-problem [42] and especially in the
one-against-all strategy, an imbalance class problem is unavoidably
incurred. Different from these methods, DRLSC can simultaneously
solve both binary-class and multi-class problems in a unified frame-
work in terms of the simple analytic solution, except only a subtle
difference between binary-class and multi-class in the formulation.
So, in this section, we will simply discuss the implementation of
DRLSC.

Without loss of generalization, we first consider the linear version
to DRLSC. For the nonlinear version, we explicitly map the samples
into the empirical feature space [43–45]. Xiong et al. [43] indicated
that the comparison between the explicit map and the classical im-
plicit map [1] shows that the former is easier to access and to study
the adaptability of a kernel to the input samples than the latter. In
fact, kernel principal component analysis (KPCA) [46] and kernel lin-
ear discriminant analysis (KLDA) [46] both essentially first map the
samples into a empirical feature space, and then implement PCA
and LDA in the feature space, respectively. Furthermore, after map-
ping by the empirical kernel, the classification function will have the
same form just as in the linear version. Therefore, here we uniformly
assume that the classifier has the linear form below

f (x) = wTx + b

We firstly discuss the binary-class case. Let the class labels yi ∈
{−1, 1}, i=1, . . . ,N. We introduce the equality constraints into DRLSC
by reformulating the optimization problem (18) as

min
w,b

⎧⎨
⎩
1
2

N∑
i=1

e2i + 1
2
[�S̃w − (1 − �)S̃b]

⎫⎬
⎭

subject to

wTxi + b + ei = yi, ∀i = 1, . . . ,N (23)
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Theorem 1 (Binary-class case). Given the parameter � ∈ [0, 1], the
minimum norm solution to the problem (23) is characterized by the
linear system with the variables c ∈ RN[

0 1TN
1N X� + IN

] [
b
c

]
=

[
0
y

]
(24)

Proof. The Lagrangian of this constrained optimization problem be-
comes

L�(w, b, ei; �i) = 1
2

N∑
i=1

e2i + 1
2
[�S̃w − (1 − �)S̃b]

−
N∑
i=1

�i(w
Txi + b + ei − yi) (25)

where �i are Lagrange multipliers.
Following the deduction in the above section, in the linear version

S̃w = wTXLwXTw

S̃b = wTXLbX
Tw

Let S� = X[�Lw − (1 − �)Lb]X
T, then Eq. (25) can be reformulated as

L�(w, b, ei; �i) = 1
2

N∑
i=1

e2i + 1
2
wTS�w −

N∑
i=1

�i(w
Txi + b + ei − yi)

(26)

The conditions for optimality w.r.t.w, b, ei, �i for the training, respec-
tively, become

�L�/�w = 0 → w =
N∑
i=1

�i(S�)
+xi

�L�/�b = 0 →
N∑
i=1

�i = 0

�L�/�ei = 0 → ei = �i
�L�/��i = 0 → wTxi + b + ei = yi (27)

where “(·)+” denotes the generalized inverse of a matrix.
Hence, the optimization problem can be written immediately

as the linear equations (24) after eliminating the variables w and
ei, where X� ∈ RN×N with X�,ij = xTj (S�)

+xi, 1N = [1, . . . , 1]T, c =
[�1, . . . , �N]

T, y = [y1, . . . , yN]
T, and IN ∈ RN×N is an identity matrix.

Then we can obtain the minimum norm solution to Eq. (23). This
proves the theorem. �

For the multi-class case, we introduce the vector labeled outputs
into the solution framework of DRLSC, which can make the compu-
tational complexity independent of the number of classes and re-
quire nomore computation than a single binary classifier [35,47–49].
Furthermore, Szedmak and Shawe-Taylor [35] presented that this
technique does not diminish classification performance but in some
cases can improve it, relatively to one-against-one and one-against-
all. Therefore, here we code the class labels following the one-of-c
rule, i.e., if xi belongs to the kth class, then yi = [0, . . . , 1, . . . , 0]T ∈ Rc,
where the kth element is 1 and the other elements are 0, ∀i=1, . . . ,N.
Then the classifier has the linear form as

f (x) = WTx + b (28)

Note that here W ∈ Rn×c, b ∈ Rc.
We introduce the equality constraints into the optimization prob-

lem as

min
W,b

⎧⎨
⎩
1
2

N∑
i=1

‖ei‖2 + 1
2
[�S̃w − (1 − �)S̃b]

⎫⎬
⎭

Table 2
Algorithm DRLSC

Input: The data {(xi , yi)}Ni=1; the parameter �.

Output: w and b.
1. Construct the intra-class compactness and inter-class separability graphs.
2. Compute the two Laplacian matrices for the two graphs.
3. Analytic solutions: solve b and c by Eq. (24) or (30), then compute w by the

corresponding Lagrangian constraints.

Table 3
The acronyms, full names and citations for the compared regularization algorithms
in the experiments

Acronym Full name Citation

RN Regularization networks [16]
GRBFN Generalized radial basis function networks [16]
SVM Support vector machines [1]
LS-SVM Least squares support vector machines [25]
MR Manifold regularization [5,10]
DRGV Discriminative regularization term defined

with the generalized variances
Section 4

subject to

WTxi + b + ei = yi, ∀i = 1, . . . ,N (29)

Similarly to the binary-class case, we have the following theorem
in the multi-class case:

Theorem 2 (Multi-class case). Given the parameter � ∈ [0, 1], the min-
imum norm solution to the problem (29) is characterized by the linear
system with the variables c ∈ Rc×N

[b c]
[

0 1TN
1N X� + IN

]
= [0c Y] (30)

where c = [c1, . . . , cN], 0c = [0, . . . , 0]T, Y = [y1, . . . , yN]. Note that the
other notations, including X�, are the same as the ones in Theorem 1.

The proof is similar to Theorem 1. Thus we omit it here.
In summary, the algorithmic procedure of DRLSC algorithm can

be formally stated as follows (Table 2):

6. Experiments

To evaluate the proposed DRLSC algorithm, in this section we
systematically compare it with the state-of-the-art regularization al-
gorithms as shown in Table 3, and DRGV discussed at the beginning
of Section 4 which defines the discriminative regularization term
with the generalized variances, both on artificial and real world clas-
sification problems. Firstly, we present three synthetic datasets for
clearly comparing the classification performances of the traditional
regularization algorithm RN with DRGV, DRLSC in terms of the dif-
ferent distribution of samples with different complexities. On the
real world problems, several datasets in the UCI database (the UCI
Machine Learning Repository) are used to evaluate the classification
accuracies derived from DRLSC in comparison to RN, GRBFN, SVM,
LS-SVM, MR and DRGV, both in linear and nonlinear versions. Then,
we further apply DRLSC to the image recognition problems.

6.1. Toy problem

In the toy problems, three two-moon datasets with different com-
plexities are discussed (Fig. 1(A–C)). Each dataset contains 100 sam-
ples in each class. As shown in Fig. 1, `·' denotes the training samples
and `+' denotes the testing samples. We compare RN (A.1, B.1, C.1)
with DRGV (A.2, B.2, C.2) and DRLSC (A.3, B.3, C.3). In DRLSC, the
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Fig. 1. The discriminant boundaries in the three two-moon datasets (A, B, C): RN (A.1, B.1, C.1), DRGV (A.2, B.2, C.2) and DRLSC (A.3, B.3, C.3).

number of the k nearest neighbors is fixed to 10. The nine subfig-
ures show the discriminant boundaries of the three methods in each
dataset. Furthermore, the respective training and testing accuracies
are labeled in Tables 4 and 5, respectively.

From Fig. 1 and Tables 4 and 5, it can be seen that (1) As a tra-
ditional regularization method, the discriminant boundaries derived
from RN is smooth all along in the three two-moon datasets (A.1, B.1,
C.1). However, with the increase in the complexity of the datasets,
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Table 4
Training accuracies (%) compared between RN, DRGV and DRLSC in the three two-
moon datasets

A B C

RN 99.00 95.00 90.00
DRGV 100.0 100.0 98.00
DRLSC 100.0 100.0 99.00

Table 5
Testing accuracies (%) compared between RN, DRGV and DRLSC in the three two-
moon datasets

A B C

RN 100.0 98.00 93.00
DRGV 100.0 100.0 93.00
DRLSC 100.0 100.0 98.00

the classification accuracies in RN descend relatively sharply, and
are always worse than those in DRGV and DRLSC. Especially, RN is
more likely (locally) over-smooth in the datasets B and C. (2) When
the two classes are far from each other (A), the boundaries of DRGV
and DRLSC (A.2, A.3) are adequately smooth as well as RN. When
the classes get nearer (B, C) and the complexity of classification in-
creases, the discriminant boundaries derived from DRGV and DRLSC
become nonsmooth (B.2, C.2, B.3, C.3). However, the classification
performances of DRGV and DRLSC are both much better than RN,
which clearly justifies the intuition that, the smoothness assumption
in the traditional regularization methods is too general for classi-
fication. Furthermore, the underlying discriminative information is
vital for classification. Consequently, owing to focusing more on the
underlying class discriminative information than the smoothness of
the classifier, DRGV and DRLSC are naturally superior to RN. (3) For
simply using the generalized variance Sw and Sb to characterize the
intra-class compactness and inter-class separability from the global
viewpoint, the discriminant boundaries of DRGV get nearer the rela-
tively dense distribution regions of the samples belonging to the dif-
ferent classes (B.2, C.2). Thus, when the samples between the classes
overlap relatively heavily, just as in (C), DRGV cannot correctly clas-
sify the samples near the boundary. On the contrary, thanks to con-
sidering the local manifold structure of the samples, the discriminant
boundaries of DRLSC accord with more the geometry of the samples,
and thus keep high training and testing accuracies even in (C) (B.3,
C.3) which validates that DRLSC can outperform DRGV in relatively
more complex cases.

6.2. UCI database

To further investigate the classification performance of our
DRLSC, we also systematically compare it with many state-of-the-art
regularization algorithms and DRGV in several real world datasets in
the UCI database. These datasets contain seven binary-class datasets
and thirteen multi-class datasets. For each dataset, we divide the
samples into two non-overlapping training set and testing set, and
each set contains almost half of samples in each class, respectively.
This process is repeated 10 times to generate 10 independent runs
for each dataset, and then the average results are collected and
reported.

We report the experimental results both in linear and nonlin-
ear versions, which are listed in Tables 6 and 7. In the linear ver-
sion, we compare DRLSC to SVM, LS-SVM, MR and DRGV, with the
linear kernel as the kernel function in these methods. We apply
the one-against-all strategy for SVM in the multi-class cases. In
the nonlinear version, we further compare DRLSC with RN, GRBFN,
SVM, LS-SVM, MR and DRGV. Multivariate Gaussian function is cho-
sen to be the Green's function, i.e., the activation function of the

Table 6
Classification performance (%) compared between SVM, LS-SVM, MR, DRGV and
DRLSC in the 20 UCI datasets with the linear kernel

Dataset Number
of classes

Dimen-
sion

Classification accuracy

SVM LS-SVM MR DRGV DRLSC

Ionosphere 2 34 87.78 85.74* 85.00* 85.17* 88.01
Sonar 2 60 77.88 77.50 79.87* 70.77* 76.83
Water 2 38 98.64* 96.10 97.98* 94.58* 96.27
Wdbc 2 30 94.98* 96.04 94.42* 95.65* 96.21
Bupa 2 6 66.99* 66.76* 68.90* 66.94* 70.23
Pid 2 8 73.96* 76.88* 69.19* 76.93* 78.26
Diabetes 2 8 75.05* 77.29* 69.40* 77.24* 78.72
Wine 3 13 95.67* 97.11* 97.11* 99.00 99.00
Lenses 3 4 74.62* 76.15* 82.85* 82.31* 84.62
Tae 3 5 50.39* 51.32* 51.58* 51.97* 56.58
New_thyroid 3 5 95.65* 93.59* 90.00 89.81* 91.11
Iris 3 4 94.53* 93.67* 96.53* 86.13* 87.07
Cmc 3 9 55.68* 51.22 52.38 50.93* 51.96
Balance_scale 3 4 87.86* 87.83* 89.20* 87.83* 88.75
Soybean_small 4 35 100.0 100.0 100.0 99.17 99.58
Vehicle 4 18 79.81* 79.08* 79.72* 77.48* 78.16
Dermatology 6 33 96.74* 97.34* 98.21 96.63* 98.26
Ecoli 6 6 86.96* 85.77 83.04* 85.48 85.71
Glass 6 9 62.57 59.17* 61.65* 61.93* 63.76
Yeast 10 8 52.35* 52.58* 55.54* 56.66* 56.27

* The difference between DRLSC and the other four methods is significant at 5%
significance level, i.e., t-value >1.7341.

Table 7
Classification performance (%) compared between RN, GRBFN, SVM, LS-SVM, MR,
DRGV and DRLSC in the 20 UCI datasets with the RBF kernel

Dataset Classification accuracy

RN GRBFN SVM LS-SVM MR DRGV DRLSC

Ionosphere 89.60* 86.88* 95.11* 95.34* 98.30* 94.26* 99.43
Sonar 82.88* 77.02* 85.00* 85.10* 92.31* 87.50* 94.23
Water 95.59* 91.02* 90.51* 89.83* 98.31* 98.31* 99.32
Wdbc 93.12* 94.28* 94.25* 94.74* 95.09* 95.51* 96.60
Bupa 72.43* 73.64* 73.06* 73.01* 78.03* 73.29* 81.73
Pid 76.25* 77.84 76.56* 76.61* 80.73* 77.42* 78.36
Diabetes 77.08* 75.16* 77.08* 77.40* 77.37* 78.91* 79.07
Wine 73.67* 76.11* 77.78* 77.00* 83.56* 96.45* 97.56
Lenses 75.38* 70.00* 79.23* 78.62* 81.54* 86.15 87.69
Tae 52.63* 47.37* 54.34* 52.89* 58.29* 56.58* 61.32
New_thyroid 93.33* 90.83* 96.02 95.56 97.31* 94.81* 96.02
Iris 96.80* 96.80* 98.27 97.47* 98.67 96.67* 98.80
Cmc 55.33* 56.29 56.41 56.25 56.36 55.43* 56.82
Balance_scale 91.28* 91.21* 92.04 91.25 91.63 91.25* 91.82
Soybean_small 100.0 82.92* 62.50* 97.92* 100.0 100.0 100.0
Vehicle 73.35* 70.66* 74.76* 72.44* 73.70* 81.82 82.61
Dermatology 97.37* 96.36* 97.28* 97.77* 98.70 98.53 98.91
Ecoli 88.81 89.11 89.17 88.33 89.70* 88.39 88.63
Glass 70.37 65.69* 72.75 71.10 76.24* 70.73 71.65
Yeast 60.56 59.22* 60.58* 60.81 61.57* 60.28* 60.56

* The difference between DRLSC and the other six methods is significant at 5%
significance level, i.e., t-value >1.7341.

individual hidden units in the two networks, and also to be the ker-
nel function in the other methods. We apply fuzzy c-means cluster-
ing algorithm (FCM) to obtain the center set in GRBFN. The Gaussian
parameter � in the seven methods and the regularization parame-
ters in RN, GRBFN, SVM, LS-SVM, and MR are selected from the set
{2−10, 2−9, . . . , 29, 210}. Moreover, the parameters � in DRLSC and
DRGV are chosen in the interval [0, 1]. And throughout the experi-
ments, we choose the best k between two and (minc{number(Nc)}−1)
in DRLSC andMR. Parameter selection is done by the cross-validation.

From these results, we can make several interesting observations
as follows:

• The kernel trick [1] can improve the classification performance for
SVM, LS-SVM, MR, DRGV and DRLSC in most datasets. For exam-
ple, in Iris, the classification accuracies of DRLSC improve more
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Fig. 2. An illustration of 14 images of one subject from the AR face database.

than 10% in the RBF kernel than in the linear kernel. However, for
some datasets, such as soybean_small for SVM, water for SVM and
LS-SVM, and wine for SVM, LS-SVM and MR, there is more likely
overfitting to some extent. On the contrary, DRLSC still demon-
strates high classification accuracy for these datasets, which val-
idates that it is more stable than SVM, LS-SVM and MR in both
binary-class and multi-class cases.

• The results show that the traditional regularization methods RN
and GRBFN perform relatively poorly almost in all datasets, which
clearly justifies that the only emphasis on the smoothness of the
classifier is far from sufficiency for classification. Thus, we should
introduce more underlying information, such as discriminative
information and local manifold structure, into the regularization
framework, to further guide better classification.

• DRLSC outperforms the other six algorithms in most datasets, es-
pecially in the RBF kernel. In order to find out whether DRLSC is
significantly better than the other methods, we perform the t-test
on the classification results of the 10 runs to calculate the statis-
tical significance of DRLSC. The null hypothesis H0 demonstrates
that there is no significant difference between the mean number
of patterns correctly classified by DRLSC and the other methods. If
the hypothesis H0 of each dataset is rejected at the 5% significance
level, i.e., the t-test value is more than 1.7341, the correspond-
ing results in Tables 6 and 7 will be denoted “∗”. Consequently,
as shown in Tables 6 and 7, it can be clearly found that DRLSC
possesses significantly superior classification performance to the
other methods in most datasets. This just accords with our con-
clusions.

• Specially, MR and DRLSC both introduce the geometry of the sam-
ples into the regularization term. The difference is that MR makes
a trade-off between the smoothness of the classifier and the main-
tenance of the local manifold structure, and DRLSC focuses more
on utilizing as much the underlying discriminative information as
possible to further direct keeping the geometry. The experimental
results demonstrate that DRLSC is superior to MR in most cases.
This fact further validates that, for classification, emphasizing the
class information is more important than doing the smoothness
of the classifier.

• Another interesting observation is that, although the general as-
sumption in manifold learning is that the samples should be suf-
ficient, in small datasets such as lenses and soybean_small, DRLSC
still performs better, which seems to indicate that the assumption
in DRLSC can be relaxed. Consequently, DRLSC can have wider ap-
plication scopes in real world problems.

6.3. Image recognition

Many researchers have suggested that the image data can often be
characterized by a low-dimensional intrinsic manifold [27,31,50,51].

That is, the image data often have an underlying invariant and as-
sociated transformations, like shifts, rotation, changes of expression,
etc., that naturally imply a manifold on which those neighboring
points are small transformations of one another [51]. Therefore, in
this subsection, we apply our proposed method to image recogni-
tion. Three well-known and publicly available databases correspond-
ing to typical image classification problems, i.e., recognition of faces
(AR), objects (COIL-20) and handwritten digits (USPS), are used to
evaluate DRLSC with RN, GRBFN, SVM, LS-SVM, MR and DRGV.

6.3.1. Dataset description and experimental setting
The AR database [52] contains 100 subjects and each subject has

26 face images taken in two sessions. For each session, there are
13 face images. Here 14 faces of natural expression from the two
sessions of each person are chosen for experiments, which are illus-
trated in Fig. 2. The 1400 images are all cropped into the same size
of 66 × 48 pixels.

COIL-20 [53] is a database of gray-scale images of 20 objects,
as shown in Fig. 3 [54]. The objects were placed on a motorized
turntable against a black background. The turntable was rotated
through 360◦ to vary the object poses with respect to a fixed cam-
era, as shown in Fig. 4 [54]. Images of the objects were taken at pose
intervals of 5◦, which corresponds to 72 images per object. For our
experiments, we have resized each of the original 1440 images down
to 32 × 32 pixels.

The USPS database1 consists of gray-scale handwritten digit im-
ages from 0 to 9, as shown in Fig. 5. Each digit contains 1100 images,
and the size of each image is 16 × 16 pixels with 256 gray levels.
Similarly to Ref. [55], here we select five pairwise digits of varying
difficulty for odd vs. even digit classification.

Each image database is partitioned into the different gallery and
probe sets where Gm/Pn indicates that m images per object are or-
derly in AR and randomly in COIL-20, USPS selected for training and
the remaining n images are used for testing [33]. Moreover, the pa-
rameter selection in the seven algorithms is the same as Section 6.2
in the nonlinear version with the RBF kernel.

6.3.2. Evaluation of classification performance
Tables 8–12 report the experimental results of the seven algo-

rithms in the AR, COIL-20 and USPS databases, respectively, in terms
of different sampling in the training and testing sets. From these re-
sults, we can also obtain several attractive insights as follows:

• It can clearly be seen that, from AR to USPS, the number of the
classes decreases; meanwhile the number of the samples in the
same class increases. The experimental results demonstrate that,
when the dataset distribution is complex and the training set is

1 Available at: http://www.cs.toronto.edu/∼roweis/data.html.

http://www.cs.toronto.edu/~roweis/data.html
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Fig. 3. An illustration of 20 subjects in the COIL-20 database.

Fig. 4. An illustration of partially 25 images of one subject from the COIL-20 database.

too small to characterize the manifold structure underlying the
data well, such as the three cases in the AR database, in which
there are 100 classes and the maximum number of the samples
in the same class for training is seven, RN, GRBFN, SVM, LS-SVM,
MR and DRGV all appears to be less effective than DRLSC. This fact
justifies that, only emphasis on the smoothness of the classifier as
RN and GRBFN, the discriminative information of the data as SVM,
LS-SVM and DRGV, or the geometrical structure underlying the
data as MR, seems far from being sufficient for image classification
in these complex cases. But by the “No Free Lunch” Theorem,
DRLSC further considers both the underlying discriminative and
geometrical information simultaneously which is both vital for

Fig. 5. An illustration of 10 subjects in the USPS database.

Table 8
Classification performance (%) compared between RN, GRBFN, SVM, LS-SVM, MR,
DRGV and DRLSC in the AR face database

G3/P11 G5/P9 G7/P7

RN 71.73 77.56 92.14
GRBFN 10.73 12.00 24.43
SVM 64.18 71.78 91.43
LS-SVM 64.09 71.89 91.14
MR 68.45 72.22 91.00
DRGV 70.00 78.78 92.00
DRLSC 74.27 80.89 93.57

Table 9
Classification performance (%) compared between RN, GRBFN, SVM, LS-SVM, MR,
DRGV and DRLSC in the COIL-20 database

G9/P63 G18/P54 G36/P36

RN 96.03 97.41 98.19
GRBFN 59.92 66.39 58.47
SVM 96.98 98.98 99.44
LS-SVM 97.06 98.89 99.44
MR 97.38 98.33 98.75
DRGV 98.10 99.07 99.44
DRLSC 98.33 99.17 99.72

classification, and thus achieves better classification accuracies.
• Due to the decrease in the number of classes and the increase in the

number of the samples, in the COIL-20 database, all the algorithms
perform much better than in the AR database. The classification
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Table 10
Classification performance (%) compared between RN, GRBFN, SVM, LS-SVM, MR,
DRGV and DRLSC in G10/P1090 in the USPS database

G10/P1090 Classification accuracy

RN GRBFN SVM LS-SVM MR DRGV DRLSC

1 vs. 7 94.77 87.39 95.69 95.64 95.73 95.78 96.97
2 vs. 3 94.54 94.04 95.69 95.73 95.00 94.45 96.79
2 vs. 7 96.61 95.83 96.65 96.74 96.83 96.38 97.71
3 vs. 8 92.57 92.43 92.75 92.66 92.98 91.47 93.58
4 vs. 7 98.35 94.95 98.62 98.53 98.53 98.39 99.08

Table 11
Classification performance (%) compared between RN, GRBFN, SVM, LS-SVM, MR,
DRGV and DRLSC in G100/P1000 in the USPS database

G100/P1000 Classification accuracy

RN GRBFN SVM LS-SVM MR DRGV DRLSC

1 vs. 7 99.75 96.90 99.85 99.85 99.95 99.85 99.95
2 vs. 3 98.00 96.45 98.10 98.15 98.35 98.15 98.40
2 vs. 7 99.55 98.95 99.70 99.60 99.70 99.60 99.70
3 vs. 8 97.70 95.85 98.40 98.25 97.90 98.20 98.50
4 vs. 7 99.30 98.30 99.70 99.50 99.50 99.40 99.70

Table 12
Classification performance (%) compared between RN, GRBFN, SVM, LS-SVM, MR,
DRGV and DRLSC in G550/P550 in the USPS database

G550/P550 Classification accuracy

RN GRBFN SVM LS-SVM MR DRGV DRLSC

1 vs. 7 99.82 97.00 99.91 99.91 99.91 99.91 99.91
2 vs. 3 99.36 97.18 99.55 99.36 99.45 99.55 99.73
2 vs. 7 99.73 99.55 99.73 99.73 99.73 99.73 99.73
3 vs. 8 99.09 98.00 99.00 98.64 98.91 99.36 99.55
4 vs. 7 99.91 99.64 99.91 99.91 99.91 99.91 99.91

accuracies of DRLSC are better than those of the other algorithms
in the three cases.

• In the USPS database, when the training sample size is small, such
as for the case of G10/P1090, DRLSC also shows better performance
relative to the other algorithms. When the training sample size
is large enough to represent the data distribution, such as for the
cases G100/P1000 and G550/P550, most algorithms can achieve
similar classification accuracy. However, in the recognitions of 2
vs. 3 and 3 vs. 8 which are relatively difficult than the other pair-
wise digits, DRLSC always keeps obvious superiority to the other
methods.

• Another observation is that, GRBFN performs poorly in all the
cases, especially in the AR and COIL-20 databases. The reason may
be that we apply FCM to obtain the center set of the hidden nodes
in GRBFN. Fern and Brodley [56,57] demonstrated that when the
data are sparse in the high-dimensional space, it is difficult for any
unsupervised clustering algorithm to find any clustering structure
in the data. In our experiments, in these two databases, FCM nec-
essarily obtains all the clustering centers in the same point, which
leads to the poor performance of GRBFN.

7. Conclusion

In this paper, we propose a novel regularization framework called
discriminatively regularized least-squares classification (DRLSC). By
making the best of the underlying discriminative and geometrical in-
formation rather than only emphasizing the smoothness of the clas-
sifier in the traditional regularization methods, DRLSC introduces a
new discriminative regularization term in the framework. Inspired
by the new graph motivated methods, the algorithm relies on two
graphs to characterize the intra-class compactness and inter-class

separability, respectively, and thus can further maximize the mar-
gins between the samples of the different classes in each local area.
Through introducing equality constraints in the formulation, the so-
lutions of DRLSC can follow from solving a set of linear equations. As
a result, the algorithm is simpler and more stable. The experimental
results have demonstrated the superiority of our proposed DRLSC
compared with the state-of-the-art regularization methods.

There are several directions of future study:

• Additional generalization: In this paper, we have introduced the
new discriminative regularization term into the regularization
framework and incorporated it with the square-loss function. In
future, we will systematically compare all possible combinations
of the discriminative regularization termwith other loss functions
or regularization terms mentioned in this paper. This will lead to
a large family of new algorithms and we believe that there should
be a lot of interesting observations.

• Theoretical foundation: In the signal and image processing re-
gion, researchers have proved that using nonsmooth and/or non-
convex regularization terms can frequently yield good estimates
[58,59]. In our DRLSC, the new discriminative regularization term
is nonconvex and nonnegative. However, DRLSC has showed su-
perior classification performance to many regularization methods.
Therefore, seeking for the theoretical foundation of DRLSC is our
main future research direction.

• Tensorization: Many researches have showed that representing
the objects as tensors of arbitrary order can further improve the
performance of algorithms in most cases. We intend to further
investigate this issue in our proposed DRLSC framework in both
theory and practice.

• Preprocessing: In this paper, we apply DRLSC to the image classi-
fication problems. Due to the generality of DRLSC learning frame-
work, it can be further combined with any preprocessing image-
based dimensionality reduction methods, and image detailed-
preserving regularization approaches [60,61]. We believe these
combinations should lead to better classification performance.

• Parameter selection: The selection of the neighbor number k is an
open problem in manifold learning. And the difficulty also appears
in the selection of the regularization parameters in regularization.
More systematic researches are needed.

• Sparse solutions: Although the solutions to DRLSC are much sim-
pler than the ones to classical SVM, especially in multi-class prob-
lems, the algorithm could be slow when the dataset is large. Tsang
and Kwok [62] have presented a sparse solution to MR for large-
scale problems. Hence how to develop a fast algorithm for the
sparse solution to DRLCS is another interesting topic for future
study.
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